Uses of Interface
com.bayesserver.inference.Evidence
-
-
Uses of Evidence in com.bayesserver.analysis
Methods in com.bayesserver.analysis with parameters of type Evidence Modifier and Type Method Description static AssociationOutputAssociation. calculate(List<AssociationPair> pairs, Evidence evidence, AssociationOptions options)Calculates the association/information between two sets of variables, such as those at either end of a Link.static AutoInsightOutputAutoInsight. calculate(State target, List<Variable> testVariables, Evidence evidence, AutoInsightOptions options)Uses comparison queries to automatically derive insight about a target variable from a trained network.static AutoInsightOutputAutoInsight. calculate(State target, List<Variable> testVariables, InferenceFactory factory, Evidence evidence)Uses comparison queries to automatically derive insight about a target variable from a trained network.static AutoInsightOutput[]AutoInsight. calculate(Variable continuousTarget, List<Interval<Double>> targetIntervals, List<Variable> testVariables, Evidence evidence, AutoInsightOptions options)Uses comparison queries to automatically derive insight about a target variable from a trained network.static DSeparationOutputDSeparation. calculate(Network network, List<Node> sourceNodes, List<Node> testNodes, Evidence evidence, DSeparationOptions options)Calculates whether sets of nodes are D-Separated, given any evidence.static DSeparationOutputDSeparation. calculate(Network network, List<Node> sourceNodes, List<Integer> sourceNodeTimes, List<Node> testNodes, List<Integer> testTimes, Evidence evidence, DSeparationOptions options)Calculates whether sets of nodes are D-Separated, given any evidence, and associated times for any temporal nodes.static ImpactOutputImpact. calculate(Network network, Distribution hypothesisQuery, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactOptions options)Analyzes the impact of sets of evidence on the resulting probability distribution of a hypothesis variable.static ImpactOutputImpact. calculate(Network network, Distribution hypothesisQuery, StateContext[] hypothesisCombination, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactOptions options)Analyzes the impact of sets of evidence on a hypothesis query and discrete combination of that hypothesis query.static ImpactOutputImpact. calculate(Network network, Variable hypothesisVariable, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactOptions options)Analyzes the impact of sets of evidence on a hypothesis state and its variable.static ImpactOutputImpact. calculate(Network network, Variable hypothesisVariable, State hypothesisState, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactOptions options)Analyzes the impact of sets of evidence on a hypothesis state and its variable.static LogLikelihoodAnalysisOutputLogLikelihoodAnalysis. calculate(Network network, Evidence evidence, List<Variable> evidenceToAnalyse, LogLikelihoodAnalysisOptions options)Analyzes the log-likelihood based on subsets of evidence.static ValueOfInformationOutputValueOfInformation. calculate(VariableContext hypothesis, List<VariableContext> testVariables, Evidence evidence, InferenceFactory factory, ValueOfInformationOptions options)Calculates value of information, which can be used to determine which variables are most likely to reduce the uncertainty of a particular variable.static ValueOfInformationOutputValueOfInformation. calculate(Variable hypothesis, List<Variable> testVariables, Evidence evidence, InferenceFactory factory, ValueOfInformationOptions options)Calculates value of information, which can be used to determine which variables are most likely to reduce the uncertainty of a particular variable.static ImpactHypothesisOutputImpact. calculateStreamed(Network network, Distribution hypothesisQuery, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactAction outputItem, ImpactOptions options)Analyzes the impact of sets of evidence on the resulting probability distribution of a hypothesis variable.static ImpactHypothesisOutputImpact. calculateStreamed(Network network, Distribution hypothesisQuery, StateContext[] hypothesisState, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactAction outputItem, ImpactOptions options)Analyzes the impact of sets of evidence on a hypothesis query and discrete combination of that hypothesis query.static LogLikelihoodAnalysisBaselineOutputLogLikelihoodAnalysis. calculateStreamed(Network network, Evidence evidence, List<Variable> evidenceToAnalyse, LogLikelihoodAnalysisAction outputItem, LogLikelihoodAnalysisOptions options)Analyzes the log-likelihood based on subsets of evidence.SensitivityFunctionOneWaySensitivityToParameters. oneWay(Evidence evidence, State hypothesis, ParameterReference parameter)Calculates how a hypothesis varies based on changes to a single parameter.InSampleAnomalyDetectionOutputInSampleAnomalyDetection. test(Evidence evidence)Determines whether a record is anomalous.SensitivityFunctionTwoWaySensitivityToParameters. twoWay(Evidence evidence, State hypothesis, ParameterReference parameter1, ParameterReference parameter2)Calculates how a hypothesis varies based on changes to two parameters. -
Uses of Evidence in com.bayesserver.causal
Methods in com.bayesserver.causal that return Evidence Modifier and Type Method Description EvidenceCausalInferenceBase. getBaseEvidence()Optional evidence which can be used to calculate the lift of queries.EvidenceCausalInferenceBase. getEvidence()Represents the evidence, or case data (e.g.Methods in com.bayesserver.causal with parameters of type Evidence Modifier and Type Method Description static EffectsAnalysisOutputEffectsAnalysis. calculate(Variable treatment, Variable outcome, CausalEffectKind effect, Evidence fixedEvidence, InferenceFactory factory, EffectsAnalysisOptions options)Calculate the causal effect on a target, varying for different treatment values.static voidBackdoorGraph. convert(Network network, Evidence evidence, Distribution query, BackdoorGraphOptions options)Constructs the Backdoor graph or the proper Backdoor graph from a Bayesian network, one of more treatments (X) and one or more outcomes (Y).static voidIndirectGraph. convert(Network network, Evidence evidence, Distribution query, IndirectGraphOptions options)Constructs the 'Indirect graph' from a Bayesian network, one of more treatments (X) and one or more outcomes (Y).IdentificationOutputBackdoorCriterion. identify(Evidence evidence, Distribution query, IdentificationOptions options)Determines how to quantify a cause-effect relationship (for a particular criterion), but does not perform the actual estimation.IdentificationOutputDisjunctiveCauseCriterion. identify(Evidence evidence, Distribution query, IdentificationOptions options)Determines how to quantify a cause-effect relationship (for a particular criterion), but does not perform the actual estimation.IdentificationOutputFrontDoorCriterion. identify(Evidence evidence, Distribution query, IdentificationOptions options)Determines how to quantify a cause-effect relationship (for a particular criterion), but does not perform the actual estimation.IdentificationOutputIdentification. identify(Evidence evidence, Distribution query, IdentificationOptions options)Determines how to quantify a cause-effect relationship (for a particular criterion), but does not perform the actual estimation.BackdoorCriterionOutputFrontDoorCriterion. identifyXZ(Evidence evidence, FrontDoorSet frontDoorNodes, BackdoorCriterionOptions options)Uses the 'Backdoor criterion' to identify any 'adjustment sets' between treatments (X) and front-door nodes (Z).BackdoorCriterionOutputFrontDoorCriterion. identifyZY(Evidence evidence, FrontDoorSet frontDoorNodes, Distribution query, BackdoorCriterionOptions options)Uses the 'Backdoor criterion' to identify any 'adjustment sets' between front-door nodes (Z) and outcomes (Y).booleanBackdoorCriterion. isValid(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, without raising an exception.booleanDisjunctiveCauseCriterion. isValid(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, without raising an exception.booleanFrontDoorCriterion. isValid(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, without raising an exception.booleanValidation. isValid(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, without raising an exception.voidCausalInferenceBase. setBaseEvidence(Evidence value)Optional evidence which can be used to calculate the lift of queries.voidCausalInferenceBase. setEvidence(Evidence value)Represents the evidence, or case data (e.g.static voidAbduction. update(Evidence evidence, List<Variable> abductionEvidenceVariables, List<Variable> characteristicVariables, AbductionOptions options)Performs abduction which is one of the steps in 'counterfactual analysis'.voidBackdoorCriterion. validate(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, and throws an exception if not, with an error message.voidDisjunctiveCauseCriterion. validate(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, and throws an exception if not, with an error message.voidFrontDoorCriterion. validate(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, and throws an exception if not, with an error message.voidValidation. validate(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, and throws an exception if not, with an error message. -
Uses of Evidence in com.bayesserver.data
Methods in com.bayesserver.data with parameters of type Evidence Modifier and Type Method Description booleanDefaultEvidenceReader. read(Evidence evidence, ReadOptions readOptions)Reads the next case (record).booleanEvidenceReader. read(Evidence evidence, ReadOptions readOptions)Reads the next case (record).booleanDefaultEvidenceReader. readTemporal(Evidence evidence, ReadOptions readOptions)Reads the next temporal record, setting evidence. -
Uses of Evidence in com.bayesserver.data.sampling
Methods in com.bayesserver.data.sampling with parameters of type Evidence Modifier and Type Method Description voidDataSampler. setFixedData(Evidence value)Sets any evidence that should be fixed for each sample.voidDataSampler. takeSample(Evidence sampleData, RandomNumberGenerator random, DataSamplingOptions options)Generates sample data from the Bayesian network or Dynamic Bayesian network.Constructors in com.bayesserver.data.sampling with parameters of type Evidence Constructor Description DataSampler(Network network, Evidence fixedData)Initializes a new instance of theDataSamplerclass. -
Uses of Evidence in com.bayesserver.inference
Classes in com.bayesserver.inference that implement Evidence Modifier and Type Class Description classDefaultEvidenceRepresents the evidence, or case data (e.g.Methods in com.bayesserver.inference that return Evidence Modifier and Type Method Description EvidenceInference. getBaseEvidence()Optional evidence which can be used to calculate the lift of queries.EvidenceLikelihoodSamplingInference. getBaseEvidence()Optional evidence which can be used to calculate the lift of queries.EvidenceLoopyBeliefInference. getBaseEvidence()Optional evidence which can be used to calculate the lift of queries.EvidenceRelevanceTreeInference. getBaseEvidence()Optional evidence which can be used to calculate the lift of queries.EvidenceVariableEliminationInference. getBaseEvidence()Optional evidence which can be used to calculate the lift of queries.EvidenceInference. getEvidence()Represents the evidence, or case data (e.g.EvidenceLikelihoodSamplingInference. getEvidence()Represents the evidence, or case data (e.g.EvidenceLoopyBeliefInference. getEvidence()Represents the evidence, or case data (e.g.EvidenceRelevanceTreeInference. getEvidence()Represents the evidence, or case data (e.g.EvidenceVariableEliminationInference. getEvidence()Gets the evidence (case data, e.g.Methods in com.bayesserver.inference with parameters of type Evidence Modifier and Type Method Description voidDefaultEvidence. copy(Evidence evidence)Replaces the current evidence, with that from anotherEvidenceinstance.voidDefaultEvidence. copy(Evidence evidence, Variable variable)Replaces the current evidence for an individual variable, with that from anotherEvidenceinstance.voidDefaultEvidence. copy(Evidence evidence, Variable variable, Integer time)Replaces the current evidence for an individual variable at a specific time, with that from anotherEvidenceinstance.voidEvidence. copy(Evidence evidence)Replaces the current evidence, with that from anotherEvidenceinstance.voidEvidence. copy(Evidence evidence, Variable variable)Replaces the current evidence for an individual variable, with that from anotherEvidenceinstance.voidEvidence. copy(Evidence evidence, Variable variable, Integer time)Replaces the current evidence for an individual variable at a specific time, with that from anotherEvidenceinstance.static TreeQueryOutputTreeQuery. query(Network network, QueryDistributionCollection queryDistributions, Evidence evidence, TreeQueryOptions queryOptions)Calculates properties of a Bayesian network or Dynamic Bayesian network when converted to a tree for inference.voidInference. setBaseEvidence(Evidence value)Optional evidence which can be used to calculate the lift of queries.voidLikelihoodSamplingInference. setBaseEvidence(Evidence value)Optional evidence which can be used to calculate the lift of queries.voidLoopyBeliefInference. setBaseEvidence(Evidence value)Optional evidence which can be used to calculate the lift of queries.voidRelevanceTreeInference. setBaseEvidence(Evidence value)Optional evidence which can be used to calculate the lift of queries.voidVariableEliminationInference. setBaseEvidence(Evidence value)Optional evidence which can be used to calculate the lift of queries.voidInference. setEvidence(Evidence value)Represents the evidence, or case data (e.g.voidLikelihoodSamplingInference. setEvidence(Evidence value)Represents the evidence, or case data (e.g.voidLoopyBeliefInference. setEvidence(Evidence value)Represents the evidence, or case data (e.g.voidRelevanceTreeInference. setEvidence(Evidence value)Represents the evidence, or case data (e.g.voidVariableEliminationInference. setEvidence(Evidence value)Sets the evidence (case data, e.g.Constructors in com.bayesserver.inference with parameters of type Evidence Constructor Description DefaultEvidence(Evidence evidence)Initializes a new instance of theDefaultEvidenceclass, and copies the evidence from another instance. -
Uses of Evidence in com.bayesserver.learning.parameters
Methods in com.bayesserver.learning.parameters that return Evidence Modifier and Type Method Description EvidenceOnlineLearning. getEvidence()Gets the evidence used internally.Methods in com.bayesserver.learning.parameters with parameters of type Evidence Modifier and Type Method Description voidOnlineLearning. adapt(Evidence evidence, OnlineLearningOptions options)Adapt the parameters of a Bayesian network using Bayesian statistics. -
Uses of Evidence in com.bayesserver.optimization
Methods in com.bayesserver.optimization that return Evidence Modifier and Type Method Description EvidenceGeneticOptimizerOutput. getEvidence()The evidence required to produce the optimized objective value.EvidenceGeneticOptimizerProgressInfo. getEvidence()Gets the evidence for the objective value.EvidenceGeneticSimplificationOutput. getEvidence()The evidence required to produce the optimized objective value.EvidenceOptimizerOutput. getEvidence()The evidence required to produce the optimized objective value.EvidenceOptimizerProgressInfo. getEvidence()Gets the evidence for the objective value.EvidenceGeneticSimplificationOptions. getEvidenceToSimplify()The evidence from a previous optimization.Methods in com.bayesserver.optimization with parameters of type Evidence Modifier and Type Method Description OptimizerOutputGeneticOptimizer. optimize(Network network, Objective objective, List<DesignVariable> designVariables, Evidence fixedEvidence, OptimizerOptions options)Perform optimization of an objective (target).OptimizerOutputGeneticSimplification. optimize(Network network, Objective objective, List<DesignVariable> designVariables, Evidence fixedEvidence, OptimizerOptions options)Perform optimization of an objective (target).OptimizerOutputOptimizer. optimize(Network network, Objective objective, List<DesignVariable> designVariables, Evidence fixedEvidence, OptimizerOptions options)Perform optimization of an objective (target).voidGeneticSimplificationOptions. setEvidenceToSimplify(Evidence value)The evidence from a previous optimization.
-