Package com.bayesserver.learning.parameters
-
Interface Summary Interface Description ParameterLearningProgress Interface to provide progress information during parameter learning. -
Class Summary Class Description DistributedMapperContext Contains information used during distributed parameter learning.DistributerContext Contains contextual information about the process/iteration being distributed.DistributionSpecification Identifies a node's distribution to learn, and options for learning.InitializationOptions Options governing the initialization of distributions at the start of parameter learning.OnlineLearning Adapts the parameters of a Bayesian network, using Bayesian statistics.OnlineLearningOptions Options for online learning (adaptation using Bayesian statistics).ParameterLearning Learns the parameters of Bayesian networks and Dynamic Bayesian networks, from data.ParameterLearningOptions Options governing parameter learning.ParameterLearningOutput Contains summary information returned byParameterLearning.learn(com.bayesserver.data.EvidenceReaderCommand, com.bayesserver.learning.parameters.ParameterLearningOptions)
.ParameterLearningProgressInfo Provides progress information duringParameterLearning.learn(com.bayesserver.data.EvidenceReaderCommand, com.bayesserver.learning.parameters.ParameterLearningOptions)
.Priors Contains parameters used to avoid boundary conditions during learning. -
Enum Summary Enum Description ConvergenceMethod The method used to determine whether learning has converged.DecisionPostProcessingMethod The type of post processing to be applied to the distributions of decision nodes at the end of parameter learning.DiscretePriorMethod The type of discrete prior to use for discrete distributions during parameter learning.DistributionMonitoring Indicates which distribution to monitor during learning.InitializationMethod Determines the algorithm used to initialize distributions during parameter learning.TimeSeriesMode Determines how time series distributions are learned.