Uses of Class
com.bayesserver.Node
-
Packages that use Node Package Description com.bayesserver com.bayesserver.analysis com.bayesserver.causal com.bayesserver.inference com.bayesserver.learning.parameters com.bayesserver.learning.structure -
-
Uses of Node in com.bayesserver
Methods in com.bayesserver that return Node Modifier and Type Method Description NodeNode. copy()Makes a copy of this instance.NodeNetworkNodeCollection. get(int index)Gets theNodeobject at the specified index.NodeNetworkNodeCollection. get(String name)Performs a case sensitive lookup.NodeNetworkNodeCollection. get(String name, boolean throwIfNotFound)Performs a case sensitive lookup.NodeLink. getFrom()The parent node of the directed link.NodeNodeDistributionExpressions. getNode()Gets the node that this instance belongs to.NodeNodeDistributionOptions. getNode()The node this instance belongs to.NodeNodeDistributions. getNode()Gets the node that this instance belongs to.NodeNodeGroupCollection. getNode()TheNodethe collection belongs to.NodeNodeLinkCollection. getNode()Gets theNodeto which the collection belongs to.NodeNodeVariableCollection. getNode()TheNodethe collection belongs to.NodeTopologicalSortNodeInfo. getNode()Gets the node in the network.NodeUnrollOutput.NodeTime. getNode()Gets the node.NodeVariable. getNode()Gets theNodethis instance belongs to, if any.NodeCLGaussian. getOwner()Gets the current owner, if assigned to a node.NodeDistribution. getOwner()Gets the current owner, if assigned to a node.NodeDistributionExpression. getOwner()Gets the current owner, if assigned to a node.NodeTable. getOwner()Gets the current owner, if assigned to a node.NodeTableExpression. getOwner()Gets the current owner, if assigned to a node.NodeNodeDistributionKey. getRelatedNode()Gets the parent of the noisy node this distribution refers to, or the noisy node itself to identify the leak distribution.NodeLink. getTo()The child node of the directed link.NodeUnrollOutput. getUnrolledNode(Node dbnNode, Integer time)Maps between a node in the original Dynamic Bayesian network, and the corresponding node in the unrolled network.NodeNetworkNodeCollection. remove(int index)Removes an element from the collection at the specified index, and any links that it has.NodeNetworkNodeCollection. set(int index, Node value)Sets theNodeobject at the specified index.static Node[]TopologicalSort. sort(Network network)Returns the nodes in a Bayesian network sorted in topological order.Methods in com.bayesserver with parameters of type Node Modifier and Type Method Description voidNetworkNodeCollection. add(int index, Node item)Inserts an element into the collection at the specified index.voidNetworkMonitor. causalObservabilityChanged(Node node, CausalObservability newCausalObservability, CausalObservability oldCausalObservability)For internal use.LinkLink. copy(Node from, Node to, int temporalOrder)Creates a new link, copying the properties from this instance, such asLink.getDescription()andLink.getCustomProperties().voidNetworkMonitor. distributionChanged(Node node, NodeDistributionKey key, NodeDistributionKind kind, Distribution newDistribution, Distribution oldDistribution)For internal use.LinkNetworkLinkCollection. find(Node from, Node to)Finds a link from one node to another if it exists, otherwise returns null.LinkNetworkLinkCollection. find(Node from, Node to, int temporalOrder)Finds a link from one node to another if it exists, otherwise returns null.UnrollOutput.NodeTimeUnrollOutput. getDbnNode(Node unrolledNode)Maps from a node in the unrolled network to the corresponding node in the original Dynamic Bayesian network.static doubleParameterCounter. getParameterCount(Node node, int order)Gets the parameter count for an individual node distribution.static doubleParameterCounter. getParameterCount(Node node, NodeDistributionKey key)Gets the parameter count for an individual node distribution.NodeUnrollOutput. getUnrolledNode(Node dbnNode, Integer time)Maps between a node in the original Dynamic Bayesian network, and the corresponding node in the unrolled network.voidNetworkMonitor. nodeCollectionChange(int index, Node add, Node remove, CollectionAction action, boolean complete)For internal use.voidNetworkMonitor. noisyNodeTypeChanged(Node node, NoisyType newNoisyType, NoisyType oldNoisyType)For internal use.booleanNetworkNodeCollection. remove(Node item)Removes theNodefrom the collection.NodeNetworkNodeCollection. set(int index, Node value)Sets theNodeobject at the specified index.Constructors in com.bayesserver with parameters of type Node Constructor Description CLGaussian(Node node)Initializes a new instance of theCLGaussianclass with the variables of a single node.CLGaussian(Node node, Integer time)Initializes a new instance of theCLGaussianclass with the variables of a single node at the specified time.Link(Node from, Node to)Initializes a new instance of theLinkclass with the parent node specified in [from] and the child in [to].Link(Node from, Node to, int temporalOrder)Initializes a new instance of theLinkclass with a specified [temporalOrder], the parent node specified in [from] and the child in [to].NodeDistributionKey(int order, Node relatedNode)Initializes a new instance of aNodeDistributionKey.NodeDistributionKey(Node relatedNode)Initializes a new instance of aNodeDistributionKey.Table(Node node)Initializes a new instance of theTableclass with the specified node variables.Table(Node... nodes)Initializes a new instance of theTableclass with all the variables from the supplied nodes.Table(Node[] nodes, HeadTail headTail)Initializes a new instance of theTableclass with all the variables from the supplied nodes.Table(Node node, Integer time)Initializes a new instance of theTableclass with the specified node variable at the specified time.TableAccessor(Table table, Node[] order)Initializes a new instance of theTableAccessorclass, allowing random access to [table] with a specified [order] for the node variables.TableAccessor(Table table, Node[] order, Integer[] times)Initializes a new instance of theTableAccessorclass, allowing random access to [table] with a specified [order] for the node variables.TableIterator(Table table, Node[] order)Initializes a new instance of theTableIteratorclass, allowing sequential access to [table] with a specified [order] for the node variables.TableIterator(Table table, Node[] order, Integer[] times)Initializes a new instance of theTableIteratorclass, allowing sequential access to [table] with a specified [order] for the node variables.VariableMap(VariableContextCollection sortedVariables, Node[] order)Initializes a new instance of theVariableMapclass. -
Uses of Node in com.bayesserver.analysis
Methods in com.bayesserver.analysis that return Node Modifier and Type Method Description NodeDSeparationTestResult. getNode()The test node.NodeParameterReference. getNode()Gets the node whose distribution parameter is being referenced.Method parameters in com.bayesserver.analysis with type arguments of type Node Modifier and Type Method Description static DSeparationOutputDSeparation. calculate(Network network, List<Node> sourceNodes, List<Node> testNodes, Evidence evidence, DSeparationOptions options)Calculates whether sets of nodes are D-Separated, given any evidence.static DSeparationOutputDSeparation. calculate(Network network, List<Node> sourceNodes, List<Integer> sourceNodeTimes, List<Node> testNodes, List<Integer> testTimes, Evidence evidence, DSeparationOptions options)Calculates whether sets of nodes are D-Separated, given any evidence, and associated times for any temporal nodes.Constructors in com.bayesserver.analysis with parameters of type Node Constructor Description AssociationPair(Node x, Node y)Initializes a new instance of theAssociationPairclass with individual nodes.ParameterReference(Node node, NodeDistributionKey key, State[] states)Initializes a new instance of theParameterReferenceclass .ParameterReference(Node node, State[] states)Initializes a new instance of theParameterReferenceclass. -
Uses of Node in com.bayesserver.causal
Methods in com.bayesserver.causal that return Node Modifier and Type Method Description NodeAdjustmentSetNode. getNode()Gets the node.NodeCausalNode. getNode()Gets the Bayesian network node.NodeDisjunctiveCauseSetNode. getNode()Gets the node.NodeFrontDoorSetNode. getNode()Gets the node.NodeNodeSetItem. getNode()Gets the node.Constructors in com.bayesserver.causal with parameters of type Node Constructor Description AdjustmentSetNode(Node node)Initializes a new instance of theAdjustmentSetNodeclass.AdjustmentSetNode(Node node, Integer time)Initializes a new instance of theAdjustmentSetNodeclass.CausalNode(Node node)Initializes a new instance of theCausalNodeclass.CausalNode(Node node, Integer time)Initializes a new instance of theCausalNodeclass.DisjunctiveCauseSetNode(Node node)Initializes a new instance of theDisjunctiveCauseSetNodeclass.DisjunctiveCauseSetNode(Node node, Integer time)Initializes a new instance of theDisjunctiveCauseSetNodeclass.FrontDoorSetNode(Node node)Initializes a new instance of theFrontDoorSetNodeclass.FrontDoorSetNode(Node node, Integer time)Initializes a new instance of theFrontDoorSetNodeclass. -
Uses of Node in com.bayesserver.inference
Methods in com.bayesserver.inference that return Node Modifier and Type Method Description NodeAssignedDefinition. getNode()The node that is assigned (multiplied into) to the clique in a junction tree.NodeEliminationDefinition. getNode()The node that has been elimiated.Methods in com.bayesserver.inference with parameters of type Node Modifier and Type Method Description voidDefaultEvidence. clear(Node node)Clears evidence on a node's variables.voidDefaultEvidence. clear(Node node, Integer time)Clears evidence on a node's single variable.voidEvidence. clear(Node node)Clears evidence on a node's variables.voidEvidence. clear(Node node, Integer time)Clears evidence on a node's single variable.DoubleDefaultEvidence. get(Node node)Gets the hard evidence value for a particular node's variable, or returns null if theEvidenceTypeequalsEvidenceType.NONEorEvidenceType.SOFT.voidDefaultEvidence. get(Node node, Double[] destination, int destinationStart, int startTime, int count)Gets the evidence for a node's single temporal variable.DoubleDefaultEvidence. get(Node node, Integer time)Gets the evidence for a node with a single variable at the specified time.DoubleEvidence. get(Node node)Gets the hard evidence value for a particular node's variable, or returns null if theEvidenceTypeequalsEvidenceType.NONEorEvidenceType.SOFT.voidEvidence. get(Node node, Double[] destination, int destinationStart, int startTime, int count)Gets the evidence for a node's single temporal variable.DoubleEvidence. get(Node node, Integer time)Gets the evidence for a node with a single variable at the specified time.EvidenceTypeDefaultEvidence. getEvidenceType(Node node)Returns the type of evidence currently set for a node with a single variable.EvidenceTypeDefaultEvidence. getEvidenceType(Node node, Integer time)Returns the type of evidence currently set for a node with a single variable at a given time.EvidenceTypeEvidence. getEvidenceType(Node node)Returns the type of evidence currently set for a node with a single variable.EvidenceTypeEvidence. getEvidenceType(Node node, Integer time)Returns the type of evidence currently set for a node with a single variable at a given time.EvidenceTypesDefaultEvidence. getEvidenceTypes(Node node)Gets the type of evidence (if any) and whether or not it is an intervention (do-operator).EvidenceTypesDefaultEvidence. getEvidenceTypes(Node node, Integer time)Gets the type of evidence (if any) and whether or not it is an intervention (do-operator).EvidenceTypesEvidence. getEvidenceTypes(Node node)Gets the type of evidence (if any) and whether or not it is an intervention (do-operator).EvidenceTypesEvidence. getEvidenceTypes(Node node, Integer time)Gets the type of evidence (if any) and whether or not it is an intervention (do-operator).IntegerDefaultEvidence. getState(Node node)Gets the hard evidence state for node with a single variable, or returns null if theEvidenceTypeequalsEvidenceType.NONEorEvidenceType.SOFT.IntegerDefaultEvidence. getState(Node node, Integer time)Gets the hard evidence state for node with a single variable, or returns null if theEvidenceTypeequalsEvidenceType.NONEorEvidenceType.SOFT.IntegerEvidence. getState(Node node)Gets the hard evidence state for node with a single variable, or returns null if theEvidenceTypeequalsEvidenceType.NONEorEvidenceType.SOFT.IntegerEvidence. getState(Node node, Integer time)Gets the hard evidence state for node with a single variable, or returns null if theEvidenceTypeequalsEvidenceType.NONEorEvidenceType.SOFT.voidDefaultEvidence. getStates(Node node, double[] buffer)Fills out a buffer containing the soft evidence for a node with a single variable.voidDefaultEvidence. getStates(Node node, double[] buffer, Integer time)Fills out a buffer containing the soft evidence for a node with a single variable at a specified time.voidEvidence. getStates(Node node, double[] buffer)Fills out a buffer containing the soft evidence for a node with a single variable.voidEvidence. getStates(Node node, double[] buffer, Integer time)Fills out a buffer containing the soft evidence for a node with a single variable at a specified time.voidDefaultEvidence. set(Node node, Double value)Sets a node's variable to a particular value (hard evidence).voidDefaultEvidence. set(Node node, Double[] source, int sourceStart, int startTime, int count)Sets temporal evidence on a node with a single variable.voidDefaultEvidence. set(Node node, Double value, Integer time)Sets evidence on a node's single variable at a specified time.voidEvidence. set(Node node, Double value)Sets a node's variable to a particular value (hard evidence).voidEvidence. set(Node node, Double[] source, int sourceStart, int startTime, int count)Sets temporal evidence on a node with a single variable.voidEvidence. set(Node node, Double value, Integer time)Sets evidence on a node's single variable at a specified time.voidDefaultEvidence. setState(Node node, Integer state)Sets evidence on a node with a single discrete variable to a particular state (hard evidence).voidDefaultEvidence. setState(Node node, Integer state, Integer time)Sets evidence on a node with a single discrete variable to a particular state (hard evidence) specifiying a time if the node is temporal.voidEvidence. setState(Node node, Integer state)Sets evidence on a node with a single discrete variable to a particular state (hard evidence).voidEvidence. setState(Node node, Integer state, Integer time)Sets evidence on a node with a single discrete variable to a particular state (hard evidence) specifiying a time if the node is temporal.voidDefaultEvidence. setStates(Node node, double[] values)Sets soft evidence for a discrete node with a single variable.voidDefaultEvidence. setStates(Node node, double[] values, Integer time)Sets soft evidence for a discrete node with a single variable, at a specified time.voidEvidence. setStates(Node node, double[] values)Sets soft evidence for a discrete node with a single variable.voidEvidence. setStates(Node node, double[] values, Integer time)Sets soft evidence for a discrete node with a single variable, at a specified time. -
Uses of Node in com.bayesserver.learning.parameters
Methods in com.bayesserver.learning.parameters that return Node Modifier and Type Method Description NodeDistributionSpecification. getNode()Gets theNodethis distribution specification refers to.NodeDistributionSpecification. getRelatedNode()Gets the related node (if any) of the distribution.Methods in com.bayesserver.learning.parameters with parameters of type Node Modifier and Type Method Description DistributionParameterLearningProgressInfo. getMonitoredDistribution(Node node)Gets a copy of the current distribution assigned to the [node].DistributionParameterLearningProgressInfo. getMonitoredDistribution(Node node, NodeDistributionKey key)Gets a copy of the current distribution assigned to the [node] at the requested order.DistributionParameterLearningProgressInfo. getMonitoredDistribution(Node node, Integer order)Gets a copy of the current distribution assigned to the [node] at the requested order.Constructors in com.bayesserver.learning.parameters with parameters of type Node Constructor Description DistributionSpecification(Node node)Initializes a new instance of theDistributionSpecificationclass.DistributionSpecification(Node node, int order)Initializes a new instance of theDistributionSpecificationclass.DistributionSpecification(Node node, NodeDistributionKey key)Initializes a new instance of theDistributionSpecificationclass. -
Uses of Node in com.bayesserver.learning.structure
Methods in com.bayesserver.learning.structure that return Node Modifier and Type Method Description NodeLinkConstraint. getA()Gets the first node involved in the constraint.NodeLinkConstraint. getB()Gets the second node involved in the constraint.NodeChowLiuStructuralLearningOptions. getRoot()Gets the root of the Chow-Liu tree.NodeTANStructuralLearningOptions. getRoot()Gets the root of the TAN tree.NodeTANStructuralLearningOptions. getTarget()Gets the target of the TAN tree.Methods in com.bayesserver.learning.structure with parameters of type Node Modifier and Type Method Description voidChowLiuStructuralLearningOptions. setRoot(Node value)Sets the root of the Chow-Liu tree.voidTANStructuralLearningOptions. setRoot(Node value)Sets the root of the TAN tree.voidTANStructuralLearningOptions. setTarget(Node value)Sets the target of the TAN tree.Method parameters in com.bayesserver.learning.structure with type arguments of type Node Modifier and Type Method Description StructuralLearningOutputChowLiuStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputChowLiuStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputClusteringStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)Learn a cluster / mixture model.StructuralLearningOutputClusteringStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputHierarchicalStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputHierarchicalStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputPCStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputPCStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputSearchStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputSearchStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputTANStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.StructuralLearningOutputTANStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)Learn the structure (links) of a Bayesian network.Constructors in com.bayesserver.learning.structure with parameters of type Node Constructor Description LinkConstraint(Node a, Node b, LinkConstraintMethod method, LinkConstraintFailureMode failureMode)Initializes a new instance of theLinkConstraintclass.LinkConstraint(Node a, Node b, Integer temporalOrder, LinkConstraintMethod method, LinkConstraintFailureMode failureMode)Initializes a new instance of theLinkConstraintclass.
-