Uses of Class
com.bayesserver.Node
-
Packages that use Node Package Description com.bayesserver com.bayesserver.analysis com.bayesserver.causal com.bayesserver.inference com.bayesserver.learning.parameters com.bayesserver.learning.structure -
-
Uses of Node in com.bayesserver
Methods in com.bayesserver that return Node Modifier and Type Method Description Node
Node. copy()
Makes a copy of this instance.Node
NetworkNodeCollection. get(int index)
Gets theNode
object at the specified index.Node
NetworkNodeCollection. get(String name)
Performs a case sensitive lookup.Node
NetworkNodeCollection. get(String name, boolean throwIfNotFound)
Performs a case sensitive lookup.Node
Link. getFrom()
The parent node of the directed link.Node
NodeDistributionExpressions. getNode()
Gets the node that this instance belongs to.Node
NodeDistributionOptions. getNode()
The node this instance belongs to.Node
NodeDistributions. getNode()
Gets the node that this instance belongs to.Node
NodeGroupCollection. getNode()
TheNode
the collection belongs to.Node
NodeLinkCollection. getNode()
Gets theNode
to which the collection belongs to.Node
NodeVariableCollection. getNode()
TheNode
the collection belongs to.Node
TopologicalSortNodeInfo. getNode()
Gets the node in the network.Node
UnrollOutput.NodeTime. getNode()
Gets the node.Node
Variable. getNode()
Gets theNode
this instance belongs to, if any.Node
CLGaussian. getOwner()
Gets the current owner, if assigned to a node.Node
Distribution. getOwner()
Gets the current owner, if assigned to a node.Node
DistributionExpression. getOwner()
Gets the current owner, if assigned to a node.Node
Table. getOwner()
Gets the current owner, if assigned to a node.Node
TableExpression. getOwner()
Gets the current owner, if assigned to a node.Node
NodeDistributionKey. getRelatedNode()
Gets the parent of the noisy node this distribution refers to, or the noisy node itself to identify the leak distribution.Node
Link. getTo()
The child node of the directed link.Node
UnrollOutput. getUnrolledNode(Node dbnNode, Integer time)
Maps between a node in the original Dynamic Bayesian network, and the corresponding node in the unrolled network.Node
NetworkNodeCollection. remove(int index)
Removes an element from the collection at the specified index, and any links that it has.Node
NetworkNodeCollection. set(int index, Node value)
Sets theNode
object at the specified index.static Node[]
TopologicalSort. sort(Network network)
Returns the nodes in a Bayesian network sorted in topological order.Methods in com.bayesserver with parameters of type Node Modifier and Type Method Description void
NetworkNodeCollection. add(int index, Node item)
Inserts an element into the collection at the specified index.void
NetworkMonitor. causalObservabilityChanged(Node node, CausalObservability newCausalObservability, CausalObservability oldCausalObservability)
For internal use.Link
Link. copy(Node from, Node to, int temporalOrder)
Creates a new link, copying the properties from this instance, such asLink.getDescription()
andLink.getCustomProperties()
.void
NetworkMonitor. distributionChanged(Node node, NodeDistributionKey key, NodeDistributionKind kind, Distribution newDistribution, Distribution oldDistribution)
For internal use.Link
NetworkLinkCollection. find(Node from, Node to)
Finds a link from one node to another if it exists, otherwise returns null.Link
NetworkLinkCollection. find(Node from, Node to, int temporalOrder)
Finds a link from one node to another if it exists, otherwise returns null.UnrollOutput.NodeTime
UnrollOutput. getDbnNode(Node unrolledNode)
Maps from a node in the unrolled network to the corresponding node in the original Dynamic Bayesian network.static double
ParameterCounter. getParameterCount(Node node, int order)
Gets the parameter count for an individual node distribution.static double
ParameterCounter. getParameterCount(Node node, NodeDistributionKey key)
Gets the parameter count for an individual node distribution.Node
UnrollOutput. getUnrolledNode(Node dbnNode, Integer time)
Maps between a node in the original Dynamic Bayesian network, and the corresponding node in the unrolled network.void
NetworkMonitor. nodeCollectionChange(int index, Node add, Node remove, CollectionAction action, boolean complete)
For internal use.void
NetworkMonitor. noisyNodeTypeChanged(Node node, NoisyType newNoisyType, NoisyType oldNoisyType)
For internal use.boolean
NetworkNodeCollection. remove(Node item)
Removes theNode
from the collection.Node
NetworkNodeCollection. set(int index, Node value)
Sets theNode
object at the specified index.Constructors in com.bayesserver with parameters of type Node Constructor Description CLGaussian(Node node)
Initializes a new instance of theCLGaussian
class with the variables of a single node.CLGaussian(Node node, Integer time)
Initializes a new instance of theCLGaussian
class with the variables of a single node at the specified time.Link(Node from, Node to)
Initializes a new instance of theLink
class with the parent node specified in [from] and the child in [to].Link(Node from, Node to, int temporalOrder)
Initializes a new instance of theLink
class with a specified [temporalOrder], the parent node specified in [from] and the child in [to].NodeDistributionKey(int order, Node relatedNode)
Initializes a new instance of aNodeDistributionKey
.NodeDistributionKey(Node relatedNode)
Initializes a new instance of aNodeDistributionKey
.Table(Node node)
Initializes a new instance of theTable
class with the specified node variables.Table(Node... nodes)
Initializes a new instance of theTable
class with all the variables from the supplied nodes.Table(Node[] nodes, HeadTail headTail)
Initializes a new instance of theTable
class with all the variables from the supplied nodes.Table(Node node, Integer time)
Initializes a new instance of theTable
class with the specified node variable at the specified time.TableAccessor(Table table, Node[] order)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the node variables.TableAccessor(Table table, Node[] order, Integer[] times)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the node variables.TableIterator(Table table, Node[] order)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the node variables.TableIterator(Table table, Node[] order, Integer[] times)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the node variables.VariableMap(VariableContextCollection sortedVariables, Node[] order)
Initializes a new instance of theVariableMap
class. -
Uses of Node in com.bayesserver.analysis
Methods in com.bayesserver.analysis that return Node Modifier and Type Method Description Node
DSeparationTestResult. getNode()
The test node.Node
ParameterReference. getNode()
Gets the node whose distribution parameter is being referenced.Method parameters in com.bayesserver.analysis with type arguments of type Node Modifier and Type Method Description static DSeparationOutput
DSeparation. calculate(Network network, List<Node> sourceNodes, List<Node> testNodes, Evidence evidence, DSeparationOptions options)
Calculates whether sets of nodes are D-Separated, given any evidence.static DSeparationOutput
DSeparation. calculate(Network network, List<Node> sourceNodes, List<Integer> sourceNodeTimes, List<Node> testNodes, List<Integer> testTimes, Evidence evidence, DSeparationOptions options)
Calculates whether sets of nodes are D-Separated, given any evidence, and associated times for any temporal nodes.Constructors in com.bayesserver.analysis with parameters of type Node Constructor Description AssociationPair(Node x, Node y)
Initializes a new instance of theAssociationPair
class with individual nodes.ParameterReference(Node node, NodeDistributionKey key, State[] states)
Initializes a new instance of theParameterReference
class .ParameterReference(Node node, State[] states)
Initializes a new instance of theParameterReference
class. -
Uses of Node in com.bayesserver.causal
Methods in com.bayesserver.causal that return Node Modifier and Type Method Description Node
AdjustmentSetNode. getNode()
Gets the node.Node
CausalNode. getNode()
Gets the Bayesian network node.Node
DisjunctiveCauseSetNode. getNode()
Gets the node.Node
FrontDoorSetNode. getNode()
Gets the node.Node
NodeSetItem. getNode()
Gets the node.Constructors in com.bayesserver.causal with parameters of type Node Constructor Description AdjustmentSetNode(Node node)
Initializes a new instance of theAdjustmentSetNode
class.AdjustmentSetNode(Node node, Integer time)
Initializes a new instance of theAdjustmentSetNode
class.CausalNode(Node node)
Initializes a new instance of theCausalNode
class.CausalNode(Node node, Integer time)
Initializes a new instance of theCausalNode
class.DisjunctiveCauseSetNode(Node node)
Initializes a new instance of theDisjunctiveCauseSetNode
class.DisjunctiveCauseSetNode(Node node, Integer time)
Initializes a new instance of theDisjunctiveCauseSetNode
class.FrontDoorSetNode(Node node)
Initializes a new instance of theFrontDoorSetNode
class.FrontDoorSetNode(Node node, Integer time)
Initializes a new instance of theFrontDoorSetNode
class. -
Uses of Node in com.bayesserver.inference
Methods in com.bayesserver.inference that return Node Modifier and Type Method Description Node
AssignedDefinition. getNode()
The node that is assigned (multiplied into) to the clique in a junction tree.Node
EliminationDefinition. getNode()
The node that has been elimiated.Methods in com.bayesserver.inference with parameters of type Node Modifier and Type Method Description void
DefaultEvidence. clear(Node node)
Clears evidence on a node's variables.void
DefaultEvidence. clear(Node node, Integer time)
Clears evidence on a node's single variable.void
Evidence. clear(Node node)
Clears evidence on a node's variables.void
Evidence. clear(Node node, Integer time)
Clears evidence on a node's single variable.Double
DefaultEvidence. get(Node node)
Gets the hard evidence value for a particular node's variable, or returns null if theEvidenceType
equalsEvidenceType.NONE
orEvidenceType.SOFT
.void
DefaultEvidence. get(Node node, Double[] destination, int destinationStart, int startTime, int count)
Gets the evidence for a node's single temporal variable.Double
DefaultEvidence. get(Node node, Integer time)
Gets the evidence for a node with a single variable at the specified time.Double
Evidence. get(Node node)
Gets the hard evidence value for a particular node's variable, or returns null if theEvidenceType
equalsEvidenceType.NONE
orEvidenceType.SOFT
.void
Evidence. get(Node node, Double[] destination, int destinationStart, int startTime, int count)
Gets the evidence for a node's single temporal variable.Double
Evidence. get(Node node, Integer time)
Gets the evidence for a node with a single variable at the specified time.EvidenceType
DefaultEvidence. getEvidenceType(Node node)
Returns the type of evidence currently set for a node with a single variable.EvidenceType
DefaultEvidence. getEvidenceType(Node node, Integer time)
Returns the type of evidence currently set for a node with a single variable at a given time.EvidenceType
Evidence. getEvidenceType(Node node)
Returns the type of evidence currently set for a node with a single variable.EvidenceType
Evidence. getEvidenceType(Node node, Integer time)
Returns the type of evidence currently set for a node with a single variable at a given time.EvidenceTypes
DefaultEvidence. getEvidenceTypes(Node node)
Gets the type of evidence (if any) and whether or not it is an intervention (do-operator).EvidenceTypes
DefaultEvidence. getEvidenceTypes(Node node, Integer time)
Gets the type of evidence (if any) and whether or not it is an intervention (do-operator).EvidenceTypes
Evidence. getEvidenceTypes(Node node)
Gets the type of evidence (if any) and whether or not it is an intervention (do-operator).EvidenceTypes
Evidence. getEvidenceTypes(Node node, Integer time)
Gets the type of evidence (if any) and whether or not it is an intervention (do-operator).Integer
DefaultEvidence. getState(Node node)
Gets the hard evidence state for node with a single variable, or returns null if theEvidenceType
equalsEvidenceType.NONE
orEvidenceType.SOFT
.Integer
DefaultEvidence. getState(Node node, Integer time)
Gets the hard evidence state for node with a single variable, or returns null if theEvidenceType
equalsEvidenceType.NONE
orEvidenceType.SOFT
.Integer
Evidence. getState(Node node)
Gets the hard evidence state for node with a single variable, or returns null if theEvidenceType
equalsEvidenceType.NONE
orEvidenceType.SOFT
.Integer
Evidence. getState(Node node, Integer time)
Gets the hard evidence state for node with a single variable, or returns null if theEvidenceType
equalsEvidenceType.NONE
orEvidenceType.SOFT
.void
DefaultEvidence. getStates(Node node, double[] buffer)
Fills out a buffer containing the soft evidence for a node with a single variable.void
DefaultEvidence. getStates(Node node, double[] buffer, Integer time)
Fills out a buffer containing the soft evidence for a node with a single variable at a specified time.void
Evidence. getStates(Node node, double[] buffer)
Fills out a buffer containing the soft evidence for a node with a single variable.void
Evidence. getStates(Node node, double[] buffer, Integer time)
Fills out a buffer containing the soft evidence for a node with a single variable at a specified time.void
DefaultEvidence. set(Node node, Double value)
Sets a node's variable to a particular value (hard evidence).void
DefaultEvidence. set(Node node, Double[] source, int sourceStart, int startTime, int count)
Sets temporal evidence on a node with a single variable.void
DefaultEvidence. set(Node node, Double value, Integer time)
Sets evidence on a node's single variable at a specified time.void
Evidence. set(Node node, Double value)
Sets a node's variable to a particular value (hard evidence).void
Evidence. set(Node node, Double[] source, int sourceStart, int startTime, int count)
Sets temporal evidence on a node with a single variable.void
Evidence. set(Node node, Double value, Integer time)
Sets evidence on a node's single variable at a specified time.void
DefaultEvidence. setState(Node node, Integer state)
Sets evidence on a node with a single discrete variable to a particular state (hard evidence).void
DefaultEvidence. setState(Node node, Integer state, Integer time)
Sets evidence on a node with a single discrete variable to a particular state (hard evidence) specifiying a time if the node is temporal.void
Evidence. setState(Node node, Integer state)
Sets evidence on a node with a single discrete variable to a particular state (hard evidence).void
Evidence. setState(Node node, Integer state, Integer time)
Sets evidence on a node with a single discrete variable to a particular state (hard evidence) specifiying a time if the node is temporal.void
DefaultEvidence. setStates(Node node, double[] values)
Sets soft evidence for a discrete node with a single variable.void
DefaultEvidence. setStates(Node node, double[] values, Integer time)
Sets soft evidence for a discrete node with a single variable, at a specified time.void
Evidence. setStates(Node node, double[] values)
Sets soft evidence for a discrete node with a single variable.void
Evidence. setStates(Node node, double[] values, Integer time)
Sets soft evidence for a discrete node with a single variable, at a specified time. -
Uses of Node in com.bayesserver.learning.parameters
Methods in com.bayesserver.learning.parameters that return Node Modifier and Type Method Description Node
DistributionSpecification. getNode()
Gets theNode
this distribution specification refers to.Node
DistributionSpecification. getRelatedNode()
Gets the related node (if any) of the distribution.Methods in com.bayesserver.learning.parameters with parameters of type Node Modifier and Type Method Description Distribution
ParameterLearningProgressInfo. getMonitoredDistribution(Node node)
Gets a copy of the current distribution assigned to the [node].Distribution
ParameterLearningProgressInfo. getMonitoredDistribution(Node node, NodeDistributionKey key)
Gets a copy of the current distribution assigned to the [node] at the requested order.Distribution
ParameterLearningProgressInfo. getMonitoredDistribution(Node node, Integer order)
Gets a copy of the current distribution assigned to the [node] at the requested order.Constructors in com.bayesserver.learning.parameters with parameters of type Node Constructor Description DistributionSpecification(Node node)
Initializes a new instance of theDistributionSpecification
class.DistributionSpecification(Node node, int order)
Initializes a new instance of theDistributionSpecification
class.DistributionSpecification(Node node, NodeDistributionKey key)
Initializes a new instance of theDistributionSpecification
class. -
Uses of Node in com.bayesserver.learning.structure
Methods in com.bayesserver.learning.structure that return Node Modifier and Type Method Description Node
LinkConstraint. getA()
Gets the first node involved in the constraint.Node
LinkConstraint. getB()
Gets the second node involved in the constraint.Node
ChowLiuStructuralLearningOptions. getRoot()
Gets the root of the Chow-Liu tree.Node
TANStructuralLearningOptions. getRoot()
Gets the root of the TAN tree.Node
TANStructuralLearningOptions. getTarget()
Gets the target of the TAN tree.Methods in com.bayesserver.learning.structure with parameters of type Node Modifier and Type Method Description void
ChowLiuStructuralLearningOptions. setRoot(Node value)
Sets the root of the Chow-Liu tree.void
TANStructuralLearningOptions. setRoot(Node value)
Sets the root of the TAN tree.void
TANStructuralLearningOptions. setTarget(Node value)
Sets the target of the TAN tree.Method parameters in com.bayesserver.learning.structure with type arguments of type Node Modifier and Type Method Description StructuralLearningOutput
ChowLiuStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
ChowLiuStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
ClusteringStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)
Learn a cluster / mixture model.StructuralLearningOutput
ClusteringStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
HierarchicalStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
HierarchicalStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
PCStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
PCStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
SearchStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
SearchStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
StructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
StructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
TANStructuralLearning. learn(EvidenceReaderCommandFactory readerCommandFactory, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.StructuralLearningOutput
TANStructuralLearning. learn(EvidenceReaderCommand evidenceReaderCommand, List<Node> nodes, StructuralLearningOptions options)
Learn the structure (links) of a Bayesian network.Constructors in com.bayesserver.learning.structure with parameters of type Node Constructor Description LinkConstraint(Node a, Node b, LinkConstraintMethod method, LinkConstraintFailureMode failureMode)
Initializes a new instance of theLinkConstraint
class.LinkConstraint(Node a, Node b, Integer temporalOrder, LinkConstraintMethod method, LinkConstraintFailureMode failureMode)
Initializes a new instance of theLinkConstraint
class.
-