Uses of Interface
com.bayesserver.Distribution
-
Packages that use Distribution Package Description com.bayesserver com.bayesserver.analysis com.bayesserver.causal com.bayesserver.inference com.bayesserver.learning.parameters com.bayesserver.statistics -
-
Uses of Distribution in com.bayesserver
Classes in com.bayesserver that implement Distribution Modifier and Type Class Description classCLGaussianRepresents a Conditional Linear Gaussian probability distribution.classTableUsed to represent probability distributions, conditional probability distributions, joint probability distributions and more general potentials, over a number of discrete variables.Methods in com.bayesserver that return Distribution Modifier and Type Method Description DistributionCLGaussian. copy()Creates a copy of the distribution.DistributionCLGaussian. copy(Integer timeShift)Creates a copy of the distribution, and shifts any times associated with variables by the specified amount.DistributionDistribution. copy()Creates a copy of the distribution.DistributionDistribution. copy(Integer timeShift)Creates a copy of the distribution, and shifts any times associated with variables by the specified amount.DistributionTable. copy()Creates a copy of the distribution.DistributionTable. copy(Integer timeShift)Creates a copy of the distribution, and shifts any times associated with variables by the specified amount.DistributionCLGaussian. divide(Distribution subset)Creates a new distribution by dividing this instance by the [subset].DistributionDistribution. divide(Distribution subset)Creates a new distribution by dividing the instance by the specified subset.DistributionTable. divide(Distribution subset)Creates a new distribution by dividing this instance by the [subset].DistributionNodeDistributions. findForTime(int time)Finds the temporal distribution that is suitable for the time specified.DistributionNodeDistributions. findForTime(int time, NodeDistributionKind kind)Finds the temporal distribution that is suitable for the time specified.DistributionNodeDistributions. get(int temporalOrder)Gets a distribution at a particular temporal order.DistributionNodeDistributions. get(NodeDistributionKey key)Gets a distribution with particular properties, such as temporal order.DistributionNodeDistributions. get(NodeDistributionKey key, NodeDistributionKind kind)Gets a distribution with particular properties, such as temporal order.DistributionNodeDistributions. get(NodeDistributionKind kind)Gets a particular kind of distribution on the node.DistributionNode. getDistribution()Returns the distribution currently associated with theNode.DistributionNodeDistributions.DistributionOrder. getDistribution()Gets the distribution.DistributionCLGaussian. getOuter()DistributionDistribution. getOuter()Returns the parent distribution, if this instance is aggregated by another distribution.DistributionTable. getOuter()DistributionCLGaussian. instantiate(Double[] values)Calculates the distribution which results from instantiating a number of variables.DistributionDistribution. instantiate(Double[] values)Calculates the distribution which results from instantiating a number of variables.DistributionTable. instantiate(Double[] values)Creates a table with a subset of variables by setting hard evidence on one or more variables.DistributionCLGaussian. instantiateHeads(Double[] headValues, double[] logPdf)Instantiates continuous head variable contexts.DistributionCLGaussian. multiply(Distribution distribution)Multiplies this instance by another distribution.DistributionDistribution. multiply(Distribution distribution)Creates a new distribution which is the result of multiplying this instance by another distribution.DistributionTable. multiply(Distribution distribution)Creates a new distribution by multiplying this instance by another distribution.DistributionNode. newDistribution()Creates a new distribution suitable for the node, however does not assign it to the node'sNode.getDistribution()property.DistributionNode. newDistribution(int temporalOrder)Creates a new distribution suitable for the requested temporal order, however it is not assigned to the node.DistributionNode. newDistribution(NodeDistributionKey key)Creates a new distribution suitable for the requested temporal order/related node, however it is not assigned to the node.DistributionNode. newDistribution(NodeDistributionKey key, NodeDistributionKind kind)Creates a new distribution suitable for the requested temporal order/related node, however it is not assigned to the node.DistributionNode. newDistribution(NodeDistributionKey key, NodeDistributionKind kind, DistributionExpression expression)Creates a new distribution from an expression suitable for the requested temporal order/related node, however it is not assigned to the node, and neither is the expression.DistributionNode. newDistribution(NodeDistributionKind kind)Creates a new distribution with the given kind, however it is not assigned to the node.Methods in com.bayesserver that return types with arguments of type Distribution Modifier and Type Method Description Set<Map.Entry<NodeDistributionKey,Distribution>>NodeDistributions. entrySet()Methods in com.bayesserver with parameters of type Distribution Modifier and Type Method Description voidNetworkMonitor. distributionChanged(Node node, NodeDistributionKey key, NodeDistributionKind kind, Distribution newDistribution, Distribution oldDistribution)For internal use.DistributionCLGaussian. divide(Distribution subset)Creates a new distribution by dividing this instance by the [subset].DistributionDistribution. divide(Distribution subset)Creates a new distribution by dividing the instance by the specified subset.DistributionTable. divide(Distribution subset)Creates a new distribution by dividing this instance by the [subset].voidCLGaussian. marginalize(Distribution superset)Marginalizes (integrates) the [superset] into this instance.voidCLGaussian. marginalize(Distribution superset, PropagationMethod propagation)Marginalizes (integrates) the [superset] into this instance.voidDistribution. marginalize(Distribution superset)Marginalizes (sums/integrates) the [superset] into this instance.voidDistribution. marginalize(Distribution superset, PropagationMethod propagation)Marginalizes (sums/integrates) the [superset] into this instance.voidTable. marginalize(Distribution superset)Marginalizes (sums) the [superset] into this instance.voidTable. marginalize(Distribution superset, PropagationMethod propagation)Marginalizes (sums) the [superset] into this instance.DistributionCLGaussian. multiply(Distribution distribution)Multiplies this instance by another distribution.DistributionDistribution. multiply(Distribution distribution)Creates a new distribution which is the result of multiplying this instance by another distribution.DistributionTable. multiply(Distribution distribution)Creates a new distribution by multiplying this instance by another distribution.voidNodeDistributions. set(int temporalOrder, Distribution value)Sets a distribution at a particular temporal order.voidNodeDistributions. set(NodeDistributionKey key, Distribution value)Sets a distribution with particular properties, such as temporal order.voidNodeDistributions. set(NodeDistributionKey key, NodeDistributionKind kind, Distribution value)Sets a distribution with particular properties, such as temporal order.voidNodeDistributions. set(NodeDistributionKind kind, Distribution value)Sets a particular kind of distribution on the node.voidNode. setDistribution(Distribution value)Returns the distribution currently associated with theNode.voidNodeDistributions. validateDistribution(Distribution value, NodeDistributionKey key)Checks that a distribution is correctly specified for a particular temporal order.voidNodeDistributions. validateDistribution(Distribution value, NodeDistributionKey key, NodeDistributionKind kind)Checks that a distribution is correctly specified for a particular temporal order. -
Uses of Distribution in com.bayesserver.analysis
Methods in com.bayesserver.analysis that return Distribution Modifier and Type Method Description DistributionAutoInsightVariableOutput. getProbabilityGivenTarget()Gets the distribution of this variable given the target.Methods in com.bayesserver.analysis with parameters of type Distribution Modifier and Type Method Description static ImpactOutputImpact. calculate(Network network, Distribution hypothesisQuery, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactOptions options)Analyzes the impact of sets of evidence on the resulting probability distribution of a hypothesis variable.static ImpactOutputImpact. calculate(Network network, Distribution hypothesisQuery, StateContext[] hypothesisCombination, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactOptions options)Analyzes the impact of sets of evidence on a hypothesis query and discrete combination of that hypothesis query.static ImpactHypothesisOutputImpact. calculateStreamed(Network network, Distribution hypothesisQuery, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactAction outputItem, ImpactOptions options)Analyzes the impact of sets of evidence on the resulting probability distribution of a hypothesis variable.static ImpactHypothesisOutputImpact. calculateStreamed(Network network, Distribution hypothesisQuery, StateContext[] hypothesisState, Evidence evidence, List<Variable> evidenceToAnalyse, ImpactAction outputItem, ImpactOptions options)Analyzes the impact of sets of evidence on a hypothesis query and discrete combination of that hypothesis query. -
Uses of Distribution in com.bayesserver.causal
Methods in com.bayesserver.causal that return Distribution Modifier and Type Method Description DistributionEffectsAnalysisOutputItem. getOutcomeDistribution()Gets P(Outcome|Do(Treatment=TreatmentState)) for discrete treatments and P(Outcome|Do(Treatment=TreatmentValue)) for continuous treatments.Methods in com.bayesserver.causal with parameters of type Distribution Modifier and Type Method Description static voidBackdoorGraph. convert(Network network, Evidence evidence, Distribution query, BackdoorGraphOptions options)Constructs the Backdoor graph or the proper Backdoor graph from a Bayesian network, one of more treatments (X) and one or more outcomes (Y).static voidIndirectGraph. convert(Network network, Evidence evidence, Distribution query, IndirectGraphOptions options)Constructs the 'Indirect graph' from a Bayesian network, one of more treatments (X) and one or more outcomes (Y).IdentificationOutputBackdoorCriterion. identify(Evidence evidence, Distribution query, IdentificationOptions options)Determines how to quantify a cause-effect relationship (for a particular criterion), but does not perform the actual estimation.IdentificationOutputDisjunctiveCauseCriterion. identify(Evidence evidence, Distribution query, IdentificationOptions options)Determines how to quantify a cause-effect relationship (for a particular criterion), but does not perform the actual estimation.IdentificationOutputFrontDoorCriterion. identify(Evidence evidence, Distribution query, IdentificationOptions options)Determines how to quantify a cause-effect relationship (for a particular criterion), but does not perform the actual estimation.IdentificationOutputIdentification. identify(Evidence evidence, Distribution query, IdentificationOptions options)Determines how to quantify a cause-effect relationship (for a particular criterion), but does not perform the actual estimation.BackdoorCriterionOutputFrontDoorCriterion. identifyZY(Evidence evidence, FrontDoorSet frontDoorNodes, Distribution query, BackdoorCriterionOptions options)Uses the 'Backdoor criterion' to identify any 'adjustment sets' between front-door nodes (Z) and outcomes (Y).booleanBackdoorCriterion. isValid(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, without raising an exception.booleanDisjunctiveCauseCriterion. isValid(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, without raising an exception.booleanFrontDoorCriterion. isValid(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, without raising an exception.booleanValidation. isValid(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, without raising an exception.voidBackdoorCriterion. validate(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, and throws an exception if not, with an error message.voidDisjunctiveCauseCriterion. validate(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, and throws an exception if not, with an error message.voidFrontDoorCriterion. validate(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, and throws an exception if not, with an error message.voidValidation. validate(Evidence evidence, Distribution query, ValidationOptions options)Tests whether adjustment inputs are valid, and throws an exception if not, with an error message. -
Uses of Distribution in com.bayesserver.inference
Methods in com.bayesserver.inference that return Distribution Modifier and Type Method Description DistributionQueryDistribution. getDistribution()Gets the distribution to query.Methods in com.bayesserver.inference with parameters of type Distribution Modifier and Type Method Description QueryDistributionDefaultQueryDistributionCollection. add(Distribution distribution)Adds the specified distribution, automatically creating aQueryDistributioninstance.QueryDistributionQueryDistributionCollection. add(Distribution distribution)Adds the specified distribution, automatically creating aQueryDistributioninstance.Constructors in com.bayesserver.inference with parameters of type Distribution Constructor Description QueryDistribution(Distribution distribution)Initializes a new instance of theQueryDistributionclass.QueryDistribution(Distribution distribution, boolean isEnabled)Initializes a new instance of theQueryDistributionclass. -
Uses of Distribution in com.bayesserver.learning.parameters
Methods in com.bayesserver.learning.parameters that return Distribution Modifier and Type Method Description DistributionParameterLearningProgressInfo. getMonitoredDistribution(Node node)Gets a copy of the current distribution assigned to the [node].DistributionParameterLearningProgressInfo. getMonitoredDistribution(Node node, NodeDistributionKey key)Gets a copy of the current distribution assigned to the [node] at the requested order.DistributionParameterLearningProgressInfo. getMonitoredDistribution(Node node, Integer order)Gets a copy of the current distribution assigned to the [node] at the requested order. -
Uses of Distribution in com.bayesserver.statistics
Methods in com.bayesserver.statistics with parameters of type Distribution Modifier and Type Method Description static doubleEntropy. calculate(Distribution joint, LogarithmBase logarithmBase)Measures the uncertainty of a distribution.static doubleEntropy. calculate(Distribution joint, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Measures the uncertainty of a distribution conditional on one or more variables.static doubleMutualInformation. calculate(Distribution joint, VariableContext x, VariableContext y, LogarithmBase logarithmBase)Measures the dependence between two variables.static doubleMutualInformation. calculate(Distribution joint, VariableContext x, VariableContext y, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Calculates mutual information or conditional mutual information, which measures the dependence between two variables.static doubleMutualInformation. calculate(Distribution joint, List<VariableContext> x, List<VariableContext> y, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Calculates mutual information or conditional mutual information, which measures the dependence between two variables.static doubleJensenShannon. divergence(Distribution p, Distribution q, LogarithmBase logarithm)Calculates the Jensen Shannon divergence between two distributions.static doubleKullbackLeibler. divergence(Distribution priorQ, Distribution posteriorP, LogarithmBase logarithm)Calculates the Kullback-Leibler divergence D(P||Q).
-