Uses of Class
com.bayesserver.VariableContext
-
Packages that use VariableContext Package Description com.bayesserver com.bayesserver.analysis com.bayesserver.inference com.bayesserver.statistics -
-
Uses of VariableContext in com.bayesserver
Methods in com.bayesserver that return VariableContext Modifier and Type Method Description VariableContext
VariableContextCollection. get(int index)
Gets theVariable
object at the specified index.VariableContext
VariableContextCollection. set(int index, VariableContext value)
Gets theVariable
object at the specified index.Methods in com.bayesserver with parameters of type VariableContext Modifier and Type Method Description boolean
VariableContextCollection. contains(VariableContext variableContext, boolean ignoreHeadTail)
Determines whether a variable-time (and optionally Head/Tail) combination is contained in the collection.double
CLGaussian. getCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, State... discrete)
Gets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).double
CLGaussian. getCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, StateContext... discrete)
Gets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).double
CLGaussian. getCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, TableIterator iterator)
Gets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).double
CLGaussian. getMean(VariableContext continuousHead, State... discrete)
Gets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the [discrete] combination.double
CLGaussian. getMean(VariableContext continuousHead, StateContext... discrete)
Gets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the [discrete] combination.double
CLGaussian. getMean(VariableContext continuousHead, TableIterator iterator)
Gets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the discrete combination.double
CLGaussian. getVariance(VariableContext continuousHead, State... discrete)
Gets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).double
CLGaussian. getVariance(VariableContext continuousHead, StateContext... discrete)
Gets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).double
CLGaussian. getVariance(VariableContext continuousHead, TableIterator iterator)
Gets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).double
CLGaussian. getWeight(VariableContext continuousHead, VariableContext continuousTail, State... discrete)
Gets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).double
CLGaussian. getWeight(VariableContext continuousHead, VariableContext continuousTail, StateContext... discrete)
Gets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).double
CLGaussian. getWeight(VariableContext continuousHead, VariableContext continuousTail, TableIterator iterator)
Gets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).int
VariableContextCollection. indexOf(VariableContext variableContext, boolean ignoreHeadTail)
Determines the index of a specific variable-time combination in the collection.VariableContext
VariableContextCollection. set(int index, VariableContext value)
Gets theVariable
object at the specified index.void
CLGaussian. setCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, double value)
Sets the covariance of a Gaussian distribution with no discrete variables between [continuousHeadA] and [continuousHeadB].void
CLGaussian. setCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, double value, State... discrete)
Sets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).void
CLGaussian. setCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, double value, StateContext... discrete)
Sets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).void
CLGaussian. setCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, double value, TableIterator iterator)
Sets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).void
CLGaussian. setMean(VariableContext continuousHead, double value, State... discrete)
Sets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the [discrete] combination.void
CLGaussian. setMean(VariableContext continuousHead, double value, StateContext... discrete)
Sets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the [discrete] combination.void
CLGaussian. setMean(VariableContext continuousHead, double value, TableIterator iterator)
Sets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the discrete combination.void
CLGaussian. setVariance(VariableContext continuousHead, double value, State... discrete)
Sets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).void
CLGaussian. setVariance(VariableContext continuousHead, double value, StateContext... discrete)
Sets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).void
CLGaussian. setVariance(VariableContext continuousHead, double value, TableIterator iterator)
Sets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).void
CLGaussian. setWeight(VariableContext continuousHead, VariableContext continuousTail, double value, State... discrete)
Sets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).void
CLGaussian. setWeight(VariableContext continuousHead, VariableContext continuousTail, double value, StateContext... discrete)
Sets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).void
CLGaussian. setWeight(VariableContext continuousHead, VariableContext continuousTail, double value, TableIterator iterator)
Sets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).Method parameters in com.bayesserver with type arguments of type VariableContext Modifier and Type Method Description boolean
VariableContextCollection. containsAll(List<VariableContext> items, boolean ignoreHeadTail)
Determines whether all [items] are matched in the collection at the specified times.Constructors in com.bayesserver with parameters of type VariableContext Constructor Description CLGaussian(VariableContext variableContext)
Initializes a new instance of theCLGaussian
class from a singleVariableContext
.CLGaussian(VariableContext[] variableContexts)
Initializes a new instance of theCLGaussian
class with [count] variables specified in [variableContexts].CLGaussian(VariableContext[] variableContexts, int count)
Initializes a new instance of theCLGaussian
class with [count] variables specified in [variableContexts].CLGaussian(VariableContext[] variableContexts, int count, HeadTail headTail)
Initializes a new instance of theCLGaussian
class with [count] variables specified in [variableContexts].Table(VariableContext variableContext)
Initializes a new instance of theTable
class from a singleVariableContext
.Table(VariableContext[] variableContexts)
Initializes a new instance of theTable
class with [variableContexts] specifying which variables to include in the distribution.Table(VariableContext[] buffer, int count)
Initializes a new instance of theTable
class with [count] variable contexts taken from [buffer].Table(VariableContext[] buffer, int count, HeadTail headTail)
Initializes a new instance of theTable
class with [count] variable contexts taken from [buffer].VariableContext(VariableContext variableContext)
Initializes a new instance of theVariableContext
class, copying an existing instance.Constructor parameters in com.bayesserver with type arguments of type VariableContext Constructor Description CLGaussian(List<VariableContext> variableContexts)
Initializes a new instance of theCLGaussian
class with the variables specified in [variableContexts].CLGaussian(List<VariableContext> variableContexts, HeadTail headTail)
Initializes a new instance of theCLGaussian
class with the variables specified in [variableContexts].Table(List<VariableContext> variableContexts)
Initializes a new instance of theTable
class with [variableContexts] specifying which variables to include in the distribution.Table(List<VariableContext> variableContexts, HeadTail headTail)
Initializes a new instance of theTable
class with [variableContexts] specifying which variables to include in the distribution.TableAccessor(Table table, List<VariableContext> order)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the variables.TableIterator(Table table, List<VariableContext> order)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the node variables.VariableMap(VariableContextCollection sortedVariables, List<VariableContext> order)
Initializes a new instance of theVariableMap
class. -
Uses of VariableContext in com.bayesserver.analysis
Methods in com.bayesserver.analysis that return VariableContext Modifier and Type Method Description VariableContext
ValueOfInformationTestOutput. getVariable()
Gets the variable that was tested.Methods in com.bayesserver.analysis that return types with arguments of type VariableContext Modifier and Type Method Description List<VariableContext>
AssociationPair. getX()
Gets the variable contexts in the first set.List<VariableContext>
AssociationPair. getY()
Gets the varible contexts in the second set.Methods in com.bayesserver.analysis with parameters of type VariableContext Modifier and Type Method Description static ValueOfInformationOutput
ValueOfInformation. calculate(VariableContext hypothesis, List<VariableContext> testVariables, Evidence evidence, InferenceFactory factory, ValueOfInformationOptions options)
Calculates value of information, which can be used to determine which variables are most likely to reduce the uncertainty of a particular variable.Method parameters in com.bayesserver.analysis with type arguments of type VariableContext Modifier and Type Method Description static ValueOfInformationOutput
ValueOfInformation. calculate(VariableContext hypothesis, List<VariableContext> testVariables, Evidence evidence, InferenceFactory factory, ValueOfInformationOptions options)
Calculates value of information, which can be used to determine which variables are most likely to reduce the uncertainty of a particular variable.Constructor parameters in com.bayesserver.analysis with type arguments of type VariableContext Constructor Description AssociationPair(List<VariableContext> x, List<VariableContext> y)
Initializes a new instance of theAssociationPair
class with two sets of variable contexts. -
Uses of VariableContext in com.bayesserver.inference
Methods in com.bayesserver.inference that return types with arguments of type VariableContext Modifier and Type Method Description List<VariableContext>
CliqueDefinition. getVariableContexts()
The variables in the clique (optionally with times for DBNs).List<VariableContext>
JunctionTreeNodeDefinition. getVariableContexts()
The variables in the clique or sepset (optionally with a time).List<VariableContext>
SepsetDefinition. getVariableContexts()
The variables in the sepset (optionally with times for DBNs). -
Uses of VariableContext in com.bayesserver.statistics
Methods in com.bayesserver.statistics with parameters of type VariableContext Modifier and Type Method Description static double
MutualInformation. calculate(Distribution joint, VariableContext x, VariableContext y, LogarithmBase logarithmBase)
Measures the dependence between two variables.static double
MutualInformation. calculate(Distribution joint, VariableContext x, VariableContext y, List<VariableContext> conditionOn, LogarithmBase logarithmBase)
Calculates mutual information or conditional mutual information, which measures the dependence between two variables.Method parameters in com.bayesserver.statistics with type arguments of type VariableContext Modifier and Type Method Description static double
Entropy. calculate(CLGaussian joint, List<VariableContext> conditionOn, LogarithmBase logarithmBase)
Measures the uncertainty of a distribution conditional on one or more variables.static double
Entropy. calculate(Distribution joint, List<VariableContext> conditionOn, LogarithmBase logarithmBase)
Measures the uncertainty of a distribution conditional on one or more variables.static double
Entropy. calculate(Table joint, List<VariableContext> conditionOn, LogarithmBase logarithmBase)
Measures the uncertainty of a distribution conditional on one or more variables.static double
MutualInformation. calculate(Distribution joint, VariableContext x, VariableContext y, List<VariableContext> conditionOn, LogarithmBase logarithmBase)
Calculates mutual information or conditional mutual information, which measures the dependence between two variables.static double
MutualInformation. calculate(Distribution joint, List<VariableContext> x, List<VariableContext> y, List<VariableContext> conditionOn, LogarithmBase logarithmBase)
Calculates mutual information or conditional mutual information, which measures the dependence between two variables.
-