Uses of Class
com.bayesserver.Table
-
Packages that use Table Package Description com.bayesserver com.bayesserver.inference com.bayesserver.statistics -
-
Uses of Table in com.bayesserver
Methods in com.bayesserver that return Table Modifier and Type Method Description Table
CLGaussian. getTable()
Gets theTable
which specifies the distribution over any discrete variables.Table
Distribution. getTable()
Gets theTable
which specifies the distribution over any discrete variables.Table
Table. getTable()
Table
TableAccessor. getTable()
Gets the underlyingTable
.Table
TableIterator. getTable()
Gets the underlyingTable
.Table
Table. instantiate(Integer[] values)
Creates a table with a subset of variables by setting hard evidence on one or more variables.Table
CLGaussian. instantiateHead(double[] headValues, double[] logPdf)
Instantiates all continuous head variable contexts.Methods in com.bayesserver with parameters of type Table Modifier and Type Method Description void
Table. add(Table source)
Adds the values from another table into this instance.void
Table. copyTo(Table destination)
Copies all values from this instance to the destinationTable
.void
Table. divideInPlace(Table subset)
Divides this instance in place by the [subset].void
Table. marginalize(Table superset)
Marginalizes (sums) the [superset] into this instance.void
Table. marginalize(Table superset, boolean initialize)
Marginalizes (sums) the [superset] into this instance.void
Table. marginalize(Table superset, boolean initialize, PropagationMethod propagation)
Marginalizes (sums) the [superset] into this instance.void
Table. marginalize(Table superset, PropagationMethod propagation)
Marginalizes (sums) the [superset] into this instance.void
Table. marginalizeLowMemory(Table[] tables)
Marginalizes (sums) the combined [tables], without requiring the memory for the combined distribution.void
Table. marginalizeLowMemory(Table[] tables, Table.MarginalizeLowMemoryOptions options)
Marginalizes (sums) the combined [tables], without requiring the memory for the combined distribution.void
CLGaussian. marginalizeTo(Table table)
Marginalizes (sums/integrates) out all continuous variables from this instance into the specified table.void
CLGaussian. marginalizeTo(Table table, PropagationMethod propagation)
Marginalizes (sums/integrates) out all continuous variables from this instance into the specified table.void
Table. multiplyInPlace(Table subset)
Multiplies the [subset] into this instance.void
Table. multiplyInPlace(Table subset, boolean initialize)
Multiplies the [subset] into this instance.Constructors in com.bayesserver with parameters of type Table Constructor Description Table(Table table)
Initializes a new instance of theTable
class, copying the [table] passed in.Table(Table table, boolean copyValues)
Initializes a new instance of theTable
class, with the same structure as an existing [table], copying the values if requested.Table(Table table, boolean copyValues, Integer timeShift)
Initializes a new instance of theTable
class, with the same structure as an existing [table], copying the values if requested, and optionally shifting any times.Table(Table table, Integer timeShift)
Initializes a new instance of theTable
class, copying the [table] passed in, however adjusting any times by the [timeShift].TableAccessor(Table table, Node[] order)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the node variables.TableAccessor(Table table, Node[] order, Integer[] times)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the node variables.TableAccessor(Table table, Variable[] order)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the variables.TableAccessor(Table table, Variable[] order, Integer[] times)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the variables at specified times.TableAccessor(Table table, VariableContextCollection order)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the variables.TableAccessor(Table table, List<Variable> order, List<Integer> times)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the variables at specified times.TableAccessor(Table table, List<VariableContext> order)
Initializes a new instance of theTableAccessor
class, allowing random access to [table] with a specified [order] for the variables.TableIterator(Table table, Node[] order)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the node variables.TableIterator(Table table, Node[] order, Integer[] times)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the node variables.TableIterator(Table table, Variable[] order)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the variables.TableIterator(Table table, Variable[] order, Integer[] times)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the variables at specified times.TableIterator(Table table, VariableContextCollection order)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the variables.TableIterator(Table table, List<Variable> order, List<Integer> times)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the variables at specified times.TableIterator(Table table, List<VariableContext> order)
Initializes a new instance of theTableIterator
class, allowing sequential access to [table] with a specified [order] for the node variables. -
Uses of Table in com.bayesserver.inference
Methods in com.bayesserver.inference that return Table Modifier and Type Method Description static Table
SoftEvidence. divideByPrior(Table target, Table prior)
Divides target soft evidence by an existing prior distribution or query.Methods in com.bayesserver.inference with parameters of type Table Modifier and Type Method Description static Table
SoftEvidence. divideByPrior(Table target, Table prior)
Divides target soft evidence by an existing prior distribution or query.void
DefaultEvidence. getStates(Table table)
Fills out a table containing the soft evidence for a particular variable.void
Evidence. getStates(Table table)
Fills out a table containing the soft evidence for a particular variable. -
Uses of Table in com.bayesserver.statistics
Methods in com.bayesserver.statistics with parameters of type Table Modifier and Type Method Description static double
Entropy. calculate(Table joint, LogarithmBase logarithmBase)
Measures the uncertainty of a distribution.static double
Entropy. calculate(Table joint, List<VariableContext> conditionOn, LogarithmBase logarithmBase)
Measures the uncertainty of a distribution conditional on one or more variables.static IntervalStatistics
IntervalStatistics. calculate(Table table)
Calculates statistics using table probabilities as weights for each interval.
-