Package com.bayesserver.data.discovery
Interface Discretize
- 
- All Known Implementing Classes:
- Clustering,- EqualFrequencies,- EqualIntervals
 
 public interface DiscretizeInterface which a discretization algorithm must implement.
- 
- 
Method SummaryAll Methods Instance Methods Abstract Methods Modifier and Type Method Description List<DiscretizationInfo>discretize(DataReaderCommand dataReaderCommand, List<DiscretizationColumn> dataColumns, DiscretizationAlgoOptions options)Discretizes one or more data columns, that may contain missing (null) values.List<Interval<Double>>discretize(Iterable<Double> unsortedData, DiscretizationOptions options, String dataColumn)Discretizes unsorted continuous data that may contain missing (null) values.List<Interval<Double>>discretizeWeighted(Iterable<WeightedValue> unsortedData, DiscretizationOptions options, String dataColumn)Discretizes unsorted weighted continuous data that may contain missing (null) values.DiscretizeProgressgetProgress()Gets an instance that receive progress notifications.voidsetProgress(DiscretizeProgress value)Gets an instance that receive progress notifications.
 
- 
- 
- 
Method Detail- 
getProgressDiscretizeProgress getProgress() Gets an instance that receive progress notifications.
 - 
setProgressvoid setProgress(DiscretizeProgress value) Gets an instance that receive progress notifications.
 - 
discretizeList<DiscretizationInfo> discretize(DataReaderCommand dataReaderCommand, List<DiscretizationColumn> dataColumns, DiscretizationAlgoOptions options) Discretizes one or more data columns, that may contain missing (null) values.- Parameters:
- dataReaderCommand- The data reader command to allow iteration of data.
- dataColumns- The data columns that should be discretized and options per column.
- options- Options governing the overall discretization algorithm. Each data column also has options.
- Returns:
- A number of bins each identified by an interval for each data column.
 
 - 
discretizeList<Interval<Double>> discretize(Iterable<Double> unsortedData, DiscretizationOptions options, String dataColumn) Discretizes unsorted continuous data that may contain missing (null) values.- Parameters:
- unsortedData- The data to discretize.
- options- Options that affect how discretization is performed, such as the algorithm to use.
- dataColumn- The name of the source column. This is only used for error reporting.
- Returns:
- A number of bins each identified by an interval.
 
 - 
discretizeWeightedList<Interval<Double>> discretizeWeighted(Iterable<WeightedValue> unsortedData, DiscretizationOptions options, String dataColumn) Discretizes unsorted weighted continuous data that may contain missing (null) values.- Parameters:
- unsortedData- The weighted data to discretize.
- options- Options that affect how discretization is performed, such as the algorithm to use.
- dataColumn- The name of the source column. This is only used for error reporting.
- Returns:
- A number of bins each identified by an interval.
 
 
- 
 
-