Package com.bayesserver.data.discovery
Interface Discretize
-
- All Known Implementing Classes:
Clustering
,EqualFrequencies
,EqualIntervals
public interface Discretize
Interface which a discretization algorithm must implement.
-
-
Method Summary
All Methods Instance Methods Abstract Methods Modifier and Type Method Description List<DiscretizationInfo>
discretize(DataReaderCommand dataReaderCommand, List<DiscretizationColumn> dataColumns, DiscretizationAlgoOptions options)
Discretizes one or more data columns, that may contain missing (null) values.List<Interval<Double>>
discretize(Iterable<Double> unsortedData, DiscretizationOptions options, String dataColumn)
Discretizes unsorted continuous data that may contain missing (null) values.List<Interval<Double>>
discretizeWeighted(Iterable<WeightedValue> unsortedData, DiscretizationOptions options, String dataColumn)
Discretizes unsorted weighted continuous data that may contain missing (null) values.DiscretizeProgress
getProgress()
Gets an instance that receive progress notifications.void
setProgress(DiscretizeProgress value)
Gets an instance that receive progress notifications.
-
-
-
Method Detail
-
getProgress
DiscretizeProgress getProgress()
Gets an instance that receive progress notifications.
-
setProgress
void setProgress(DiscretizeProgress value)
Gets an instance that receive progress notifications.
-
discretize
List<DiscretizationInfo> discretize(DataReaderCommand dataReaderCommand, List<DiscretizationColumn> dataColumns, DiscretizationAlgoOptions options)
Discretizes one or more data columns, that may contain missing (null) values.- Parameters:
dataReaderCommand
- The data reader command to allow iteration of data.dataColumns
- The data columns that should be discretized and options per column.options
- Options governing the overall discretization algorithm. Each data column also has options.- Returns:
- A number of bins each identified by an interval for each data column.
-
discretize
List<Interval<Double>> discretize(Iterable<Double> unsortedData, DiscretizationOptions options, String dataColumn)
Discretizes unsorted continuous data that may contain missing (null) values.- Parameters:
unsortedData
- The data to discretize.options
- Options that affect how discretization is performed, such as the algorithm to use.dataColumn
- The name of the source column. This is only used for error reporting.- Returns:
- A number of bins each identified by an interval.
-
discretizeWeighted
List<Interval<Double>> discretizeWeighted(Iterable<WeightedValue> unsortedData, DiscretizationOptions options, String dataColumn)
Discretizes unsorted weighted continuous data that may contain missing (null) values.- Parameters:
unsortedData
- The weighted data to discretize.options
- Options that affect how discretization is performed, such as the algorithm to use.dataColumn
- The name of the source column. This is only used for error reporting.- Returns:
- A number of bins each identified by an interval.
-
-