Package com.bayesserver.analysis
Class HistogramDensity
- java.lang.Object
-
- com.bayesserver.analysis.HistogramDensity
-
- All Implemented Interfaces:
EmpiricalDensity
public final class HistogramDensity extends Object implements EmpiricalDensity
Represents an empirical density function built from a histogram, which can represent arbitrary univariate distributions.
-
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description double
cdf(double x)
Calculates an approximate value for cdf(x).List<HistogramDensityItem>
getItems()
The collection of intervals and their statistics making up the histogram density.double
inverseCdf(double probability)
Calculates an approximate value for the inverse cumulative distribution function.static HistogramDensity
learn(Iterable<WeightedValue> values, HistogramDensityOptions options)
Learns a univariate empirical density from data.
-
-
-
Method Detail
-
inverseCdf
public double inverseCdf(double probability)
Calculates an approximate value for the inverse cumulative distribution function.- Specified by:
inverseCdf
in interfaceEmpiricalDensity
- Parameters:
probability
- The probability p at which to return x when p = Cdf(x) .- Returns:
- The approximate inverse cdf.
-
getItems
public List<HistogramDensityItem> getItems()
The collection of intervals and their statistics making up the histogram density.
-
cdf
public double cdf(double x)
Calculates an approximate value for cdf(x).- Specified by:
cdf
in interfaceEmpiricalDensity
- Parameters:
x
- The value at which to evaluate the cdf.- Returns:
- The approximate cdf(x).
-
learn
public static HistogramDensity learn(Iterable<WeightedValue> values, HistogramDensityOptions options)
Learns a univariate empirical density from data.- Parameters:
values
- The values to learn from.options
- Options affecting the learning process.- Returns:
- An empirical density.
-
-