Construction & inference in Java
package com.bayesserver.examples;
import com.bayesserver.*;
import com.bayesserver.inference.*;
import javax.xml.stream.*;
import java.io.*;
public class NetworkExample {
public static void main(String[] args) throws IOException, XMLStreamException, InconsistentEvidenceException {
// In this example we programatically create a simple Bayesian network.
// Note that you can automatically define nodes from data using
// classes in BayesServer.Data.Discovery,
// and you can automatically learn the parameters using classes in
// BayesServer.Learning.Parameters,
// however here we build a Bayesian network from scratch.
Network network = new Network("Demo");
// add the nodes (variables)
State aTrue = new State("True");
State aFalse = new State("False");
Node a = new Node("A", aTrue, aFalse);
State bTrue = new State("True");
State bFalse = new State("False");
Node b = new Node("B", bTrue, bFalse);
State cTrue = new State("True");
State cFalse = new State("False");
Node c = new Node("C", cTrue, cFalse);
State dTrue = new State("True");
State dFalse = new State("False");
Node d = new Node("D", dTrue, dFalse);
network.getNodes().add(a);
network.getNodes().add(b);
network.getNodes().add(c);
network.getNodes().add(d);
// add some directed links
network.getLinks().add(new Link(a, b));
network.getLinks().add(new Link(a, c));
network.getLinks().add(new Link(b, d));
network.getLinks().add(new Link(c, d));
// at this point we have fully specified the structural (graphical) specification of the Bayesian Network.
// We must define the necessary probability distributions for each node.
// Each node in a Bayesian Network requires a probability distribution conditioned on it's parents.
// newDistribution() can be called on a Node to create the appropriate probability distribution for a node
// or it can be created manually.
// The interface Distribution has been designed to represent both discrete and continuous variables,
// As we are currently dealing with discrete distributions, we will use the
// Table class.
// To access the discrete part of a distribution, we use Distribution.Table.
// The Table class is used to define distributions over a number of discrete variables.
Table tableA = a.newDistribution().getTable(); // access the table property of the Distribution
// IMPORTANT
// Note that calling Node.newDistribution() does NOT assign the distribution to the node.
// A distribution cannot be assigned to a node until it is correctly specified.
// If a distribution becomes invalid (e.g. a parent node is added), it is automatically set to null.
// as node A has no parents there is no ambiguity about the order of variables in the distribution
tableA.set(0.1, aTrue);
tableA.set(0.9, aFalse);
// now tableA is correctly specified we can assign it to Node A;
a.setDistribution(tableA);
// node B has node A as a parent, therefore its distribution will be P(B|A)
Table tableB = b.newDistribution().getTable();
tableB.set(0.2, aTrue, bTrue);
tableB.set(0.8, aTrue, bFalse);
tableB.set(0.15, aFalse, bTrue);
tableB.set(0.85, aFalse, bFalse);
b.setDistribution(tableB);
// specify P(C|A)
Table tableC = c.newDistribution().getTable();
tableC.set(0.3, aTrue, cTrue);
tableC.set(0.7, aTrue, cFalse);
tableC.set(0.4, aFalse, cTrue);
tableC.set(0.6, aFalse, cFalse);
c.setDistribution(tableC);
// specify P(D|B,C)
Table tableD = d.newDistribution().getTable();
// we could specify the values individually as above, or we can use a TableIterator as follows
TableIterator iteratorD = new TableIterator(tableD, new Node[]{b, c, d});
iteratorD.copyFrom(new double[]{0.4, 0.6, 0.55, 0.45, 0.32, 0.68, 0.01, 0.99});
d.setDistribution(tableD);
// The network is now fully specified
// If required the network can be saved...
if (false) // change this to true to save the network
{
network.save("fileName.bayes"); // replace 'fileName.bayes' with your own path
}
// Now we will calculate P(A|D=True), i.e. the probability of A given the evidence that D is true
// use the factory design pattern to create the necessary inference related objects
InferenceFactory factory = new RelevanceTreeInferenceFactory();
Inference inference = factory.createInferenceEngine(network);
QueryOptions queryOptions = factory.createQueryOptions();
QueryOutput queryOutput = factory.createQueryOutput();
// we could have created these objects explicitly instead, but as the number of algorithms grows
// this makes it easier to switch between them
inference.getEvidence().setState(dTrue); // set D = True
Table queryA = new Table(a);
inference.getQueryDistributions().add(queryA);
inference.query(queryOptions, queryOutput); // note that this can raise an exception (see help for details)
System.out.println("P(A|D=True) = {" + queryA.get(aTrue) + "," + queryA.get(aFalse) + "}.");
// Expected output ...
// P(A|D=True) = {0.0980748663101604,0.90192513368984}
// to perform another query we reuse all the objects
// now lets calculate P(A|D=True, C=True)
inference.getEvidence().setState(cTrue);
// we will also return the log-likelihood of the case
queryOptions.setLogLikelihood(true); // only request the log-likelihood if you really need it, as extra computation is involved
inference.query(queryOptions, queryOutput);
System.out.println(String.format("P(A|D=True, C=True) = {%s,%s}, log-likelihood = %s.", queryA.get(aTrue), queryA.get(aFalse), queryOutput.getLogLikelihood()));
// Expected output ...
// P(A|D=True, C=True) = {0.0777777777777778,0.922222222222222}, log-likelihood = -2.04330249506396.
// Note that we can also calculate joint queries such as P(A,B|D=True,C=True)
}
}