Class RegressionStatistics


  • public final class RegressionStatistics
    extends Object
    Calculates statistics for a network which is used to predict continuous values (regression).
    • Method Detail

      • create

        public static RegressionStatistics create​(DataReaderCommand readerCommand,
                                                  String actual,
                                                  String predicted)
        Initializes a new instance of the RegressionStatistics class.
        Parameters:
        readerCommand - Returns the data containing the actual values and predicted values.
        actual - The name of the data column containing the actual value.
        predicted - The name of the data column containing the predicted value.
      • create

        public static RegressionStatistics create​(DataReaderCommand readerCommand,
                                                  String actual,
                                                  String predicted,
                                                  String caseWeight)
        Initializes a new instance of the RegressionStatistics class.
        Parameters:
        readerCommand - Returns the data containing the actual values and predicted values.
        actual - The name of the data column containing the actual value.
        predicted - The name of the data column containing the predicted value.
        caseWeight - The case weight, if any. Can be null.
      • getMeanAbsoluteError

        public Double getMeanAbsoluteError()
        Gets the mean absolute error (MAE), which is a common measure used to determine how close predictions are to the actual values. The mean absolute error is the average of the absolute errors.
      • getSumAbsoluteError

        public Double getSumAbsoluteError()
        Gets the sum absolute error (SAE). The sum of the absolute errors.
      • getMeanSquaredError

        public Double getMeanSquaredError()
        Gets the mean squared error (MSE), which is a common measure used to determine how close predictions are to the actual values. The mean squared error is the average of the squared errors.
      • getSumSquaredError

        public Double getSumSquaredError()
        Gets the sum of squared errors (SSE), which is a common measure used to determine how close predictions are to the actual values.
      • getRMSE

        public Double getRMSE()
        Gets the root mean squared error (RMSE).
      • getMeanActual

        public Double getMeanActual()
        Gets the mean of the actual column.
      • getVarianceActual

        public Double getVarianceActual()
        Gets the variance of the actual column.
      • getRSquared

        public Double getRSquared()
        Gets the R squared value (Coefficient of determination).
      • getSupport

        public double getSupport()
        Gets the support/weight for the values used to calculate the statistics. (May not be a whole number, if original weights are not).