Class ClusteringStructuralLearningOptions

  • All Implemented Interfaces:
    StructuralLearningOptions

    public final class ClusteringStructuralLearningOptions
    extends Object
    implements StructuralLearningOptions
    Options for structural learning with the com.bayesserver.learning.structure.clustering.ClusteringStructuralLearning class.
    • Constructor Detail

      • ClusteringStructuralLearningOptions

        public ClusteringStructuralLearningOptions()
    • Method Detail

      • getInferenceFactory

        public InferenceFactory getInferenceFactory()
        Gets the inference factory used during scoring.
      • setInferenceFactory

        public void setInferenceFactory​(InferenceFactory value)
        Sets the inference factory used during scoring.
      • getRunsPerConfiguration

        public Integer getRunsPerConfiguration()
        Gets the number of times training is re-run for each network structure tested. The higher the number, the longer the tests will take, but the more accurate the tests will be.
      • setRunsPerConfiguration

        public void setRunsPerConfiguration​(Integer value)
        Sets the number of times training is re-run for each network structure tested. The higher the number, the longer the tests will take, but the more accurate the tests will be.
      • getClusterVariableName

        public String getClusterVariableName()
        Gets the name of the cluster/latent node/variable created when more than 1 hidden state is detected.
      • setClusterVariableName

        public void setClusterVariableName​(String value)
        Sets the name of the cluster/latent node/variable created when more than 1 hidden state is detected.
      • getPartitions

        public Integer getPartitions()
        Gets the number of cross validation partitions to use when scoring each cluster count. The higher the number, the longer the tests will take.
      • setPartitions

        public void setPartitions​(Integer value)
        Sets the number of cross validation partitions to use when scoring each cluster count. The higher the number, the longer the tests will take.
      • getMaximumIterations

        public Integer getMaximumIterations()
        Gets the maximum number of iterations used by parameter learning to score each configuration. The higher the number, the longer the tests will take.
      • setMaximumIterations

        public void setMaximumIterations​(Integer value)
        Sets the maximum number of iterations used by parameter learning to score each configuration. The higher the number, the longer the tests will take.
      • getStopping

        public Stop getStopping()
        Gets the instance implementing Stop used for early stopping. Stopping is different to cancellation, as stopping will still complete the learning process, albeit having not run to completion.
        Specified by:
        getStopping in interface StructuralLearningOptions
        Returns:
        The instance used for stopping.
      • setStopping

        public void setStopping​(Stop value)
        Sets the instance implementing Stop used for early stopping. Stopping is different to cancellation, as stopping will still complete the learning process, albeit having not run to completion.
        Specified by:
        setStopping in interface StructuralLearningOptions
        Parameters:
        value - The instance used for stopping.
      • getMaximumClusterCount

        public Integer getMaximumClusterCount()
        Gets the maximum number of clusters generated.
      • setMaximumClusterCount

        public void setMaximumClusterCount​(Integer value)
        Sets the maximum number of clusters generated.
      • getTestSingleCluster

        public boolean getTestSingleCluster()
        Gets a value which determines whether a test is performed for a single cluster (i.e. no significant clusters found).
      • setTestSingleCluster

        public void setTestSingleCluster​(boolean value)
        Sets a value which determines whether a test is performed for a single cluster (i.e. no significant clusters found).